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Abstract—Easily available 3,4-dibromo-2(5H)-furanone undergoes a regioselective cross-coupling reaction with alkylboronic acids
in the presence of catalytic amounts of PdCl2(MeCN)2 and AsPh3 and a large molar excess of Ag2O to provide the corresponding
4-alkyl-3-bromo-2(5H)-furanones in satisfactory yields. These monobromo derivatives have proven to be useful precursors to
unsymmetrically substituted 3,4-dialkyl-2(5H)-furanones which include the racemic form of naturally occurring seiridin. © 2001
Elsevier Science Ltd. All rights reserved.

In recent years 3,4-disubstituted 2(5H)-furanones have
attracted considerable attention as synthetic target
compounds1 due to the wide range of biological activi-
ties they cover,2 their occurrence in nature3 and their
use as synthetic intermediates.4

Recently, in connection with our ongoing projects
related to the design and use of simple and efficient
protocols for the synthesis of natural and unnatural
bioactive oxygen-containing heterocycles,5 we devel-
oped a new procedure for the selective synthesis of
4-aryl-3-bromo-2(5H)-furanones 2 involving the reac-
tion of easily available 3,4-dibromo-2(5H)-furanone 1
with aryl(trialkyl)stannanes in the presence of the cata-
lyst precursor consisting of 5 mol% PdCl2(PhCN)2 and
10 mol% AsPh3 or that obtained by treatment of 2.5
mol% Pd2(dba)3 with 10 mol% AsPh3.6 These mono-
bromo derivatives were then used as precursors to
unsymmetrically disubstituted 3,4-diaryl-2(5H)-fura-

nones 3, 4-aryl-3-methyl-2(5H)-furanones 4 and 4-aryl-
2(5H)-furanones 5.6

More recently, we investigated a new method for the
efficient and selective synthesis of unsymmetrically sub-
stituted 3,4-dialkyl-2(5H)-furanones of general formula
6.7 In particular, encouraged by the successful outcome
of the palladium-catalyzed monoarylation reactions of
1,6 we explored the possibility of preparing compounds
6 by selective palladium-catalyzed alkylation of 1 at the
4-position,8 followed by a palladium-catalyzed methyla-
tion reaction of the resulting 4-alkyl-3-bromo-2(5H)-
furanones 7.

After unsuccessful attempts to prepare compounds 7 in
satisfactory yields by treatment of 1 either with 1.1
equiv. of 9-alkyl-9-borabicyclo[3.3.1]nonanes 89 in a ca.
1:3 mixture of THF and dioxane at 60°C in the pres-
ence of 3 equiv. of K3PO4, 5 mol% Pd(OAc)2 and 10
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mol% PPh3 or with 1.1 equiv. of alkylboronic acids 910

in refluxing THF for 23 h, in the presence of 3 equiv. of
Ag2O and catalytic quantities of Pd(PPh3)4, we were
pleased to observe that the reaction of 1 with 1.1 equiv.
of 9 in THF under reflux for 18–23 h, in the presence of
3 equiv. of Ag2O, 5 mol% PdCl2(MeCN)2 and 20 mol%
AsPh3, proceeded regioselectively to give the desired
cross-coupled products 7 in yields ranging from 69 to
79% (Table 1).11,12

Interestingly, the reaction, which was amenable to the
preparation of multigram quantities of compounds 7, in
all the cases examined (entries 1–4, Table 1) did not
provide any trace of the product derived from the
cross-coupling at the bromine-bearing carbon atoms
C-3 and C-4.

With the availability of 4-alkyl-3-bromo-2(5H)-fura-
nones 7a–d (entries 1–4, Table 1), we explored their
conversion into the 3,4-dialkyl-2(5H)-furanones of gen-
eral formula 6. Thus compounds 7 were reacted with 3
equiv. of tetramethylstannane 10 in 1-methyl-2-pyrro-
lidinone (NMP) at 80°C for 23–68 h, in the presence of
the catalyst precursor consisting of 5 mol%
PdCl2(PhCN)2, 10 mol% AsPh3 and 10 mol% CuI or
that obtained by treatment of 2.5 mol% Pd2(dba)3 with
10 mol% AsPh3 and 10 mol% CuI. Disappointingly, the
final reaction mixtures, which at the beginning were
homogeneous and green colored and after a few min-
utes at 80°C became dark and heterogeneous, proved to
contain mixtures of unreacted compounds 7, the desired

cross-coupled products 6 and hydrodebrominated com-
pounds 11 in which the monobromo derivatives 7 were
the major components.

Nevertheless, to our delight we found that the reaction
of compounds 7 to form the desired products 6 pro-
ceeded cleanly and without the formation of the
byproducts 11 if a large molar excess (3 equiv.) of 10
was used as the reagent in NMP at 85°C and the
catalyst precursor consisted of 5 mol% PdCl2[P(o-
Tol)3]2 and 10 mol% CuI. As shown in Table 2, this
protocol allowed us to prepare compounds 6a–c in
88–95% yield. It is interesting to note that when the
cross-coupling was over, the reaction mixtures became
dark and heterogeneous.

Finally, it is worth mentioning that treatment of the
prepared 6c with 1.5 equiv. of TiCl4 in CH2Cl2 at 0°C
for 45 min, followed by aqueous workup and purifica-
tion by MPLC on silica gel of the resulting crude
reaction product, afforded racemic seiridin 12 in 91%
yield.13,14 The spectral properties of this compound
were in satisfactory agreement with those of the natu-
rally occurring homochiral compound isolated from
Seiridium cardinale.3b

Table 1. Palladium-catalyzed synthesis of 4-alkyl-3-bromo-2(5H)-furanones 7a

1+9 �������������
PdCl2(MeCN)2, AsPh3

Ag2O,THF, reflux
7

Entry Reaction time (h) Product 7 Yield (%)Alkylboronic acid

9 R

7an-C8H17 229a1 71
23 7b 70t-C4H9O-(CH2)69b2

9c t-C4H9O-CH(CH3)-(CH2)53 23 7c 69
4 n-C4H99d 18 7d 79

a All reactions were performed in THF under reflux in the presence of 3 equiv. of Ag2O, 5 mol% PdCl2(MeCN)2 and 20 mol% AsPh3.

Table 2. Palladium-catalyzed synthesis of 3,4-dialkyl-2(5H)-furanones 6a

7+10 �������������
PdCl2[P(o-Tol)3]2, CuI

NMP, 85°C
6

Reaction time (h) Product 6 Yield (%)Entry 4-Alkyl-3-bromo-2(5H)-furanone

7 R

7a1 n-C8H17 18 6a 90
20t-C4H9O-(CH2)67b2 886b

7c 956c18t-C4H9O-CH(CH3)-(CH2)53

a All reactions were performed in NMP at 85°C with 3 equiv. of tetramethylstannane 10 in the presence of 5 mol% PdCl2[P(o-Tol)3]2 and 10 mol%
CuI.



O
O

Me
t-BuO 1) TiCl4 (1.5 eq), CH2Cl2, 0 °C

2) NaCl(aq)

(91 % yield)
O

O

Me
HO

6c 12

F. Bellina et al. / Tetrahedron Letters 42 (2001) 3851–3854 3853

In summary, we have developed an unprecedented,
general and efficient procedure for the regioselective
synthesis of 4-alkyl-3-bromo-2(5H)-furanones 7. We
have also demonstrated that these monobromo deriva-
tives are useful precursors to unsymmetrically substi-
tuted 3,4-dialkyl-2(5H)-furanones which include the
racemic form of naturally occurring seiridin 12.
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